EJB & JSP: Java On The Edge, Unlimited Edition

Your Guide to Cutting-Edge J2EE Programming Techniques.

[1 Back Cover

Table of Contents

Part 1 EJB & JSP—Java On the Edge
Chapter 1 - Enterprise Computing Concepts
Chapter 2 - J2EE Component APIs

Part 11 JavaServer Pages

Chapter 3 - A First Look at JavaServer Pages
Chapter 4 - The Elements of a JSP Page

Chapter 5 - JSP Web Sessions

Chapter 6 - JSP and JavaBeans

Chapter 7 - JSP Tag Extensions

Chapter 8 - JSPs and Servlets Revisited

Chapter 9 - JSP Errors and Debugging

Chapter 10 - The “Make Money” Brokerage Application

Part 111 Enterprise JavaBeans

Chapter 11 - A First Look at EJB

Chapter 12 - The Elements of an EJB

Chapter 13 - EJB Contexts and Containers
Chapter 14 - EJB Session Beans

Chapter 15 - EJB Entity Beans

Chapter 16 - EJB Security

Chapter 17 - EJB and Transaction Management
Chapter 18 - Creating EJB Clients

Chapter 19 - The Proposed EJB 2.0 Specification
Chapter 20 - Integrating JSPs and EJBs
Appendix A - The JSP API

Appendix B - The EJB API

Appendix C - Configuring the Tomcat Web Server

by Lou Marco ISBN: 0764548026

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=623160142

Appendix D - XML Overview

Top 5

http://www.unltded.com/toc.asp?bkid=2878#TOP

PROFESSIONAL MINDWARE é

UNLIMITED EDITION

.
N
O
LL]
L
o =
—
c
O
(C
=
Q
.

o
L*]
T
o
=
3
Q
!

0
v
—
)
o0
£
LL]

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge]

Your Guide to Cutting-Edge J2EE Programming Techniques.

Back Cover

Enterprise Java Beans and JavaServer Pages deliver the tools you need to
develop state-of-the-art multi-tier applications for the Internet or an intranet. But
how do you create robust components for these two APIs--and get them to work
together with each other and the rest of the containers in Java 2 Enterprise
Edition? This unique guide delivers the answers. With lucid explanations and
lots of sample code illustrating the development of a hotel reservation system,
Lou Marco shows you step by step how to harness the power of JSP and EJB--
and create cutting-edge J2EE applications.

Make JSP, EJB, and J2EE Work Together

. Get the lowdown on J2EE N-tier application development

. Work with JSP objects, standard actions, and Web sessions

. Use JavaBeans or JSP tags to access a database with JDBC

. Understand how JSP works with Java servlets

. Take control of JSP errors, exceptions, and debugging

. Master EJB basics, from clesses to session and entity Beans

. Harness EJB tools to secure your application

. Manage transactions using EJB with JDBC, JTS, and JTA

. Build Bean- or container-managed persistence in EJB components

. Learn the ins and outs of JSP and EJB as you create a fully functional
hotel reservation system

About the Authors

Lou Marco is a consultant, writer, and the owner of Lou Marco and Associates,
a firm that designs Web sites and writes custom software. An IT professional
with more than two decades of experience, he contributes frequently to
Enterprise Systems Journal and is the author of ISPF/REXX Development for

Experienced Programmers.

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Part I: EJB & JSP—Java On the Edge

Chapter List

Chapter 1: Enterprise Computing Concepts

Chapter 2: J2EE Component APIs

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=514334394

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 1. Enterprise Computing Concepts

JavaServer Pages (JSPs) and Enterprise JavaBeans (EJBs) are part of a server-side application development
specification called the Java 2 Platform, Enterprise Edition (J2EE). Before you jump into the specifics of JSPs or
EJBs, some background on enterprise application development, J2EE, and how JSP and EJB fit into J2EE is in order.

This chapter sets the stage with information on the characteristics of a typical computing environment found in a
modern corporation. Next, you read about two significant advancements in computer science that provide application
developers with the means to satisfy their customers’ demands for computing services. You get a high-level look at
J2EE and see how J2EE addresses the needs of application developers. You read about the components of J2EE,
which include JSP and EJB. The chapter closes with a short discussion on the roles that JSPs and EJBs play in
developing enterprise applications with the J2EE specification.

The Enterprise Computing Environment

Today'’s corporate computing environment is a different animal from its ancestors. Typically, enterprise computing
environments are:

. Data-Obsessed: These days, the modern company is addicted to its data. With storage costs low, companies are
less likely to purge data stores today than in years past. Some industries, such as brokerage and insurance, keep
decades’ worth of data and subject their data to intense analysis. The astute corporate mavens realize that
corporate data is an asset worth exploiting. Those in charge look to their computing professionals to provide tools
that exploit this valuable asset.

. Distributed: Today’s enterprise computing environment has grown beyond the scenario of a single machine in an
air-conditioned room, with rows and rows of storage devices, serving hundreds or thousands of dumb green
screens. The more likely scenario for today’s environment is one of networked servers in diverse geographical
locations that serve data to hundreds or thousands of comparatively smart GUI clients.

. Secure: A good deal of corporate data must be kept from the prying eyes of the pesky, prying employee itching to
know who got the biggest raise in the department, the dementedly disgruntled employee looking to vend
proprietary information, and the capriciously curious employee trying to learn about various systems and
applications.

. Scalable: The environment that serves the needs of one hundred may be inadequate to serve the needs of one
thousand. As the number of users increases, resources, such as bandwidth or database connections, have a bad
habit of thinning out to unacceptable levels or simply running out.

. Fault tolerant: With the computing environment distributed among many parts, the possibility of any single part
failing increases with the number of parts. The company cannot afford to have its systems crash and burn every
time a server winks out or a data store goes offline.

. Heterogeneous: The days of a company using products from a single vendor are gone. More likely, a company
uses a mix of hardware and software from several competing vendors. Today, everything from the physical disk

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=894021235

packs to the video card on the desktop may be purchased from different vendors.

The modern computing environment clearly shares the characteristics of today’s diverse corporation doing business in
today’s diverse world.

The challenges facing systems professionals tasked with developing enterprise applications are legion. How have
today’s systems folk risen to the challenge? Two powerful technologies developed over the past few decades have
proven instrumental in developing applications that allow the modern corporation to conduct its business. These
technologies are client-server architectures and object technologies.

Client-server architectures describe how to partition the major functions of an application in layers. Object
technologies deal with constructing software systems as groups of communicating objects; each object has a set of
well-defined behaviors (called methods) and comes with its own data (called properties).

Developing Applications in Layers

In the days of bell-bottoms and disco music, companies used networks primarily to connect mainframes using
dedicated hardware and proprietary software and protocols. In the 1980s, companies started to use UNIX servers and
the TCP/IP protocol, which quickly became an industry standard. In response to servers’ not adequately scaling to
meet the needs of ever-increasing numbers of users, those in charge of the shop began to shift processing power
from centralized servers to the network. The era of client-server computing had begun.

Developing client-server applications is different from developing applications that run on green-screen, glass house
systems. The distributing of processing power between client and server demands that client-server software be
developed to reflect this division.

One strategy devised to develop client-server applications is to write the software in layers. A layer is a logical level
that deals with related application tasks. The basic idea is to develop the software to implement the layer’s functions
independently of features in other layers.

By partitioning software into layers, application developers could concentrate on the features and problems peculiar to
a particular layer. Division of application features among layers meant division of development responsibility. In
addition, the marketplace started to offer tools to support this software development strategy.

The layers commonly used to abstract a software system these days are a presentation layer, an application logic
layer, and a data layer. Each layer is responsible for functions not found in the other layers:

. The presentation layer is responsible for user interface tasks. These tasks include accepting user input, performing
various edit checks on input, and displaying relevant application output.

. The application logic layer is responsible for tasks that execute the algorithms that solve business problems. These
tasks include performing calculations, handling security, and accessing data. The application logic layer contains
most of the code for the application.

. The data layer is responsible for tasks that maintain permanent data stores in the form of one or more databases.
These tasks include data locking, data integrity support, and transaction support.

Code that implements tasks within a layer communicates with code in adjacent layers only. For example, code within
the presentation layer communicates with code within the application logic layer but does not communicate with code
within the data layer.

To implement a layered application, you need an architecture that describes the physical boundaries between the
above layers. The components that reside within the physical boundaries of the layers are called tiers. A summary of
two common client-server architectures, called two-tier and three-tier (or n-tier) architectures, follows.

Note The term architecture as used throughout this chapter refers to a partitioning strategy and a coordination
strategy. The partitioning strategy leads to dividing the entire system in discrete, non-overlapping parts or
components. The coordination strategy leads to explicitly defined interfaces between those parts.

Two-Tier Architectures in Brief

Some two-tier architectures combine most of the application logic layer tasks with the presentation layer, while others
combine most of the application logic layer with the data layer.

A two-tier architecture could have one tier consisting of client PCs containing application logic code and database
access routines and the other tier consisting of one or more databases. This arrangement is often referred to as a fat
client.

Another way to implement the two-tier architecture is placing the application logic layer with the data layer to form a
tier and having the presentation layer in the other tier. Here, the database would rely on stored procedures and
triggers to implement most of the application logic. This arrangement is often referred to as a thin client.

Figure 1-1 shows the differences between fat and thin client arrangements.

Presentation, Presentation
App Logic Layer Layer

FAT Client With THIM Client
Application Logic With Mo App
Cade Logic Code

Data Stores,
Data Stores, Stared Procediures,
Mo Stored Procedures Triggers
Data Layer Application Logic,
Data Layer

Figure 1-1: Fat and thin clients compared and contrasted

As you can see in Figure 1-1, the fat client architecture containing application logic code is a combination of the
functionality of the presentation and application logic layers. The thin client architecture has the application logic code
buried within the DBMS in the form of stored procedures (code stored within the database that performs some
application-specific task) and triggers (a feature of a DBMS that executes stored procedures based on one or more
conditions). Most two-tier architectures fall somewhere in between these extremes. The dashed line represents the
tier boundary.

Conventional wisdom these days is that two-tier architectures can satisfactorily handle a hundred or so users. For
larger numbers of users, performance may start to degrade because of the client’s need to maintain a connection to
the server. These constant connections drain network bandwidth and use scarce database connections. This problem
is more severe in the fat client than in the thin client scenario. For the fat client implementation, every request for data
requires reaching across the network, dipping into the database, and returning data to the client. For the thin client
implementation, one request for data can trigger a DBMS stored procedure that executes on the server. This stored
procedure could return the same data that a fat client would need multiple requests for. Although using stored
procedures helps alleviate the bandwidth problem, the thin client still requires the database connection.

More bad news for adopters of a two-tier architecture follows. In the fat client scenario, any change to the application
logic (and you know that there will be changes) involves compiling and installing the changed code on all the clients —
an expensive proposition. In the thin client scenario, the enterprise usually relies on vendor-specific databases and the
vendor’s implementation of triggers and stored procedures. Typically, proprietary implementations of DBMS features
are not portable to different platforms and usually will not work with different vendor products.

Every strain of technology solves some old problems while introducing new ones. Two-tier architectures are certainly
no exception; although applications developed with a two-tier architecture achieve some benefits by isolating tasks
into separate tiers, the disadvantages of the architecture remain. A sensible question is: Are there ways of exploiting
the advantages of these architectures while taking the sting out of their problems?

N-tier Architectures in Brief

Perhaps | can shed some light on a possible answer to the $64,000 question posed in the previous section by posing
another question: What are the root causes of the deficiencies of the two-tier architectures? One cause is the
architecture’s failure to give the application logic layer its own tier. By trying to divvy up the functionality of the
application logic layer, the resulting architecture ties applications to high-maintenance clients, proprietary and
nonportable databases, and clogged networks. Why not give the application logic layer its very own tier?

You don't have to be a rocket scientist to guess what the architecture is called when the presentation, application
logic, and data layers have their own tier. The “n” in n-tier means that a particular layer (the application logic layer,
really) may have more than one physical tier. Whether you're talking about three-tier (a specific case of the more
general n-tier) or n-tier, the basic concepts are the same — to encapsulate the application logic from the presentation
and data layers.

What does this buy you? With the computations, business logic code, and other application logic layer tasks isolated
in one or more separate tiers, these tasks do not reside in the client, nor do they reside in the database. Put another
way, n-tier architectures typically deploy thin clients and DBMSs devoid of application code.

There are several paths to the road of three-tier architecture implementation. A popular implementation places the
application logic layer on one or more application servers. These servers provide many essential services to a three-
tier application, such as transaction management, resource pooling, and security.

Rather than allow a fat client or stored procedure—laden database to handle transactions (when to commit one or
more transactions or when to rollback, for example), a three-tier architecture implementation delegates this vitally
important function to the application server. Because business logic dictates what constitutes a transaction, support
services dealing with transaction management belong on the application server because the business logic is
implemented there.

As previously mentioned, a shortcoming of two-tier architectures is the consumption of resources, such as database
connections, even when such resources are not needed. A characteristic of two-tier architectures is that each client
needs a connection to the databases. Three- or n-tier architecture implementations allow a client to request data from
one or more databases by communicating with code in the application logic layer tier. This code can dynamically
connect to a database to fetch and return the requested data to the client. Also, this code can queue the data request
until a database connection becomes available, and then fetch and return the requested data to the client.

Application servers — both hardware and software — are more secure than desktop client PCs. The hardware that
houses the application server usually resides in a physically protected space. Rarely would you worry about stumbling
over a power cord for the hardware that houses an application server! On the software side, most server software is
built with security in mind unlike client desktop operating systems, such as Windows or Mac OS.

Do three-tier architectures solve the problems of two-tier architectures cited above? For the most part, they do. The
problems caused by fat clients simply do not apply to n-tier architectures. Thin clients are relatively inexpensive to
install and maintain. Application changes will not have much of an impact on thin clients; the application servers take
the brunt of the changes.

Pulling application logic out of the DBMS by not using stored procedures places less reliance on proprietary stored
procedure implementations. Three-tier implementations have a wider choice of DBMS products for use in the data

layer than two-tier, thin-client implementations.

In general, the isolation of functions in discrete layers, implemented in discrete tiers, means that each tier can be
tweaked by using best-of-breed products without much impact on the remaining tiers.

As previously mentioned, any technology worth its salt solves old problems while introducing new ones. Some
problems caused by implementing applications that follow the n-tier architecture are described below.

N-tier architectures are flexible. One result of this flexibility is that the three- or n-tier implementer has to cope with
more hardware and software components than its two-tier counterpart. The addition of the application server opens up
new system configuration possibilities. While selecting best-of-breed products to implement the system’s layers is a
good thing, the problems with having a multiple vendor environment, replete with finger pointing, persist. As you might
imagine, maintenance costs for a large n-tier system are high.

Imagine a large n-tier application, such as a banking/ATM system, with thousands of clients dispersed all over the
world securely reading and writing terabytes of data to multiple data stores. The activity between tiers necessary to
get the job done must be staggering! The overhead produced by transmitting and receiving all this data across
networks that connect hardware and software components that implement the multiple tiers can slow down things, to
be sure.

The problems I've mentioned can be solved for the most part by spending more money for additional hardware — not
exactly the favorite solution!

We've talked about the benefits of developing software in layers, or tiers. As we’'ll see here and throughout
subsequent chapters, J2EE provides an architecture for constructing n-tier applications. Before we move on to discuss
J2EE particulars, we need to take a look at another essential technology instrumental to J2EE application
development that has proved its worth in theory and practice: object technology.

Top <

| <= Prov_ | Noxt =

Presentation, Presentation

App Logic Layer Layer

FAT Client With THIN Client

Application Logic With No App

Code Logic Code
)

Y Data Stores,
Data Stores Stored Procedures,
No Stored Procedures Triggers

Data Layer Application Logic,
Data Layer

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 2: J2EE Component APIs

This chapter provides an overview of the J2EE component APIs. As mentioned in Chapter 1, J2EE is a collection of
approximately 12 application programming interfaces (APIs) for developing enterprise applications. These APIs define
a complete set of services that software engineers use to develop software components. J2EE simplifies the work of
an application development team by providing a rich set of services that manage many application details without
programming.

J2EE API Classifications

The J2EE APIs provide numerous services to n-tier application developers. We may group the J2EE APIs into three
classifications corresponding to the category of service, or function, the APIs provide to the application development
team. The classifications are as follows:

. Application components: These include applets, which are Java programs that execute in the client browser;
servlets, which execute on the server; and JSP pages, which provide dynamic content to Web pages. J2EE also
enables clients to run applications that can access data (by using a database API) without going to a Web server.

. Resource managers: These enable customer components to connect to an external component. These external
components can be another piece of J2EE, such as JavaMail (for mail messaging) or an IBM mainframe
transaction processor (such as IMS or CICS).

. Database access: J2EE database access relies on the Java Database Connectivity APl or JDBC, which enables
a customer container to issue industry-standard SQL. Relational database access in Java also relies heavily on
Java Transaction Services, or JTS, and the Java Transaction API.

The J2EE APIs work in concert to provide the services mentioned in the aforementioned classifications. For example,
a developer would use an application component API, such as JSP, to create a Web interface for an application that
accesses data from a relational database using JDBC. In the following section, we'll take a look at J2EE APIs that fall
within the preceding classifications.

Top <

| <= Prov | Noxt =

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=112436264

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

J2EE APIs

Sun Microsystems provides a list of technologies that developers use in creating J2EE applications. Most of these
technologies have an associated API. A few, notably XML, are used in several J2EE APIs. Here is a list of the J2EE
APIs with a brief description:

. JavaServer Pages (JSP): Enables developers to dynamically generate Web pages with HTML, XML, and Java
code. JSP pages execute on the Web server.

. Java Servlets: Enables developers to dynamically create Web content as well as provide additional functionality to
a Web server. Java servlets execute on the Web server.

. Enterprise JavaBeans (EJB): Defines an architecture that enables developers to create reusable, server-side
components called enterprise beans.

. Java Messaging Services (JMS): A set of APIs that invoke asynchronous messaging services such as broadcast
and point-to-point (client-to-client) messages.

. Java Transaction API (JTA): Provides developers with a mechanism for handling the commit and the rollback of
transactions as well as ensuring the ACID (Atomicity, Consistency, Isolation, and Durability) properties of a
transaction.

. Java Transaction Services (JTS): Provides developers with a means of communicating with transaction monitors
and other transaction-oriented resources.

. JavaMail: Enables a J2EE application to send and receive e-mail.

. Java Naming and Directory Interface (JNDI): Provides an interface for accessing name and directory services,
such as LDAP directory services and Domain Name Service (DNS).

. Java Database Connectivity (JDBC): Provides the J2EE application with a standard interface to databases
(usually relational databases).

. Remote Method Invocation (RMI/IIOP): Enables a Java application to invoke methods on different Java Virtual
Machines.

. Interface Definition Language (IDL): Enables J2EE-based applications to use CORBA objects.

In the following sections of this chapter, we explore the APIs in the preceding list in greater detail.

CORBA at a Glance

CORBA, the Common Object Request Broker Architecture, defines a standard for creating distributed object request
systems. The CORBA standard is the result of the collaboration of well over a hundred companies. The end result is a
standard that is language, platform, and vendor neutral.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=529979399

CORBA enables the enterprise to use existing software by providing features that developers can use to wrap existing
software as CORBA objects. With CORBA, applications written in several languages can happily coexist and
communicate with each other.

A great deal of Enterprise JavaBeans was derived from CORBA. Indeed, a cursory look at EJB could lead one to think
that EJB is a slimmed-down, Java-centric version of CORBA. EJB and CORBA can be used together, specifically
when an enterprise bean needs access to code written in another language, or code written in another language
needs access to an enterprise bean.

Because CORBA is the brainchild of numerous companies, no single company controls CORBA. A committee (the
Object Management Group, or OMG) must agree upon changes made to the CORBA specification, which has both
positive and negative consequences. On the plus side, you are fairly assured that you are not tied to a single vendor,
product, or architecture when using a CORBA implementation. On the minus side, you may have to wait years for the
OMG to make decisions on CORBA-related issues.

The OMG Interface Definition Language (IDL) defines the interface to objects in the CORBA universe. Although IDL is
a language, you, the application programmer, do not necessarily execute IDL code. Rather, you write IDL code and
use a code generator to transform IDL into a specific programming language. Java programmers use an IDL-to-Java
translator to generate a representation of their IDL as Java. If you're curious, you can take a look at how IDL
translates to Java by examining f t p: / / www. ong. or g/ pub/ docs/ f or mat . 98- 02- 29. pdf .

JavaServer Pages

You've already read some of the skinny on JavaServer Pages (JSP). Some call JSP the front door to enterprise
applications, and with good reason. JSPs enable the enterprise application developer to separate presentation code
from business logic code on the server, thereby providing the application with a robust presentation layer.

Java Servlets

As with JSP, servlets enable developers to dynamically create Web content as well as provide additional functionality
to a Web server.

If a JSP gets translated into a servlet, why are JSPs important in the J2EE arena? JSP pages are easier to code and
maintain than servlets because servlets require the Java programmer to explicitly write out HTML statements to a
response object, whereas the Web page developer using JSP merely codes HTML.

cross-reference Please refer to Chapter 3, “A First Look at JavaServer Pages” and Chapter 8, “JSP

Pages and Servlets Revisited,” for more detailed discussions of servlets and their
relationship to JSP pages.

For example, assuming you is the current Web page viewer below, the following code is a JSP that generates an
HTML page that displays the string Yes, it’ s concatenated with the current user.

Listing 2-1: Your first JSP page

<htm >

<body>

<%@ page | anguage="java" %

<p> Yes, it'’s,

<% String you = (String) session.getAttribute(‘you);
out.println(you); %

</ p>

</ body>

</htm >

The code in Listing 2-1 is the functional equivalent to the servlet code shown in Listing 2-2.
Note Recall that JSP pages get translated into servlets. However, the servlet code shown in Listing 2-2 is not the
result of translating the JSP in Listing 2-1 into a servlet. The JSP translator generates a servlet that performs

the same function as the servlet shown in Listing 2-2 but with different Java code .

Listing 2-2: A servlet functionally equivalent to the JSP page in listing 2-1

i mport java.io.*;

i mport javax.servlet.*;
public class HeyltsYou extends HttpServlet {
public void doGet(HttpServl et Request req,
Ht t pServl et Response res) throws Servl et Exception, | CException {
res.set Content Type("text/htm");

Ht t pSessi on session = req. get Session(false) ;
PrintWiter out = res.getWiter();
out.println("<htm >");
out. println("<body>");
out.println ("<p> Hey, it’'sey, it’'s,");
out.print("String you = ");
out.println((String) session.getAttribute(‘you’));
out.println(user);
out.println("</p>");
out.println("</body>");
out.println("</htm>");

The JSP page is smaller than the servlet, and most users agree that the JSP is easier to understand and maintain.
Many others also agree that writing out HTML (or XML, of course) by way of out . pri ntl n() statements is a major

drag because a large page can have hundreds of out . pri ntl n() statements.

Hence, the bottom line is that, while JSPs and servlets often accomplish the same task, you'll still need servlets from
time to time to do what JSPs cannot.

Enterprise JavaBeans

Enterprise JavaBeans (EJB) define an architecture that enables developers to create reusable, server-side
components called enterprise beans. Enterprise beans typically reside on the application server or may have their own
dedicated server. Of course, you can read much more about EJB in the following chapters.

Please note that enterprise beans are not JavaBeans! One difference is that calling a JavaBean (from a servlet or JSP
page) involves intra-process communication, whereas calling an EJB (from a servlet or JSP page) involves inter-
process communication. You can read about other differences in the following chapters.

Java Messaging Services

Java Messaging Services (JMS) is an API that invokes asynchronous messaging services such as broadcast and
point-to-point (client-to-client) messages.

JMS is an API for using networked messaging services. A messaging system accepts messages from "producer”
clients and delivers them to "consumer"” clients. Data sent in a message is often intended as a sort of event notification
(for example, an e-mail-handling process may need to be notified when a request is queued). Another common use
for messaging (thus, JMS) is for interfacing with remote legacy applications. It can be complex and sometimes risky to
use Remote Procedure Call (RPC) or a Java variant such as Remote Method Invocation (RMI) to directly invoke
remote applications while a messaging solution can provide an easier and more reliable interconnection. In short, why
write remote procedure calls when you have access to an API specifically designed for sending messages across a
network from one object to another?

JMS calls frequently rely on the Java Naming and Directory Interface (JNDI) to locate message recipients. JNDI is
discussed later in this chapter.

Java Transaction API

Java Transaction API (JTA) provides developers with a mechanism for handling the commit and the rollback of
transactions as well as ensuring the ACID (Atomicity, Consistency, Isolation, and Durability) properties of a
transaction.

JTA is used for managing distributed transactions (e.g., updates to multiple databases that must be handled in a
single transaction). JTA is a low-level APl and associated coding is complex and error-prone — not in the spirit of
J2EE!

Fortunately, EJB containers or application servers generally provide support for distributed transactions using JTA.
For this reason, the EJB developer is able to gain the benefit of distributed transactions, leaving the complex
implementation details to the provider of the EJB container. Now, that's more in the J2EE spirit!

Java Transaction Services

The Java Transaction Service (JTS) provides developers with a means of communicating with transaction monitors
and other transaction-oriented resources. Of course, JTS provides high-level support for JTA as well as other
transaction services.

The Java Transaction Service plays the role of an intermediary for all the constituent components of the EJB
architecture. In JTS terminology, the director is called the transaction manager. The participants in the transaction that
implement transaction-protected resources such as relational databases are called resource managers. When an
application begins a transaction, it creates a transaction object that represents the transaction. You would use JNDI
(Java Naming and Directory Interface) to access this transaction object. The application invokes the resource
managers to perform the work of the transaction. As the transaction progresses, the transaction manager keeps track
of each of the resource managers enlisted in the transaction. Often, JTS assists in managing the activities involved in
a two-phase commit.

JavaMail

The JavaMail API offers a standard Java extension API to talk to all your favorite standard Internet mail protocols. The
API provides a platform-independent and protocol-independent framework to build Java technology—based mail and
messaging applications. Put differently, JavaMail represents a standardized, extensible platform for communicating,
presenting, and manipulating all current and future Multipurpose Internet Mail Extension (MIME) types. The JavaMalil
APl is implemented as a Java platform standard extension.

Say goodbye to writing your own classes for talking to mail protocols! Say goodbye to learning yet another unique
third-party or in-house class library for dealing with e-mail or newsgroups! JavaMail was designed to communicate
with popular protocols and MIME types.

Java Naming and Directory Interface

Java Naming and Directory Interface (JNDI) provides an interface for accessing name and directory services, such as
LDAP directory services and Domain Name Service (DNS). JNDI enables Java programs to use hame servers and
directory servers to look up objects or data by name. This important feature enables a client object to locate a remote
server object or data.

JNDI is a generic API that can work with any name or directory server. As such, JNDI was not designed to replace
existing technology, but instead it provides a common interface to existing naming services. For example, JNDI
provides methods to bind a name to an object, enabling that object to be located, regardless of its location on the
network.

Server providers have been implemented for many common protocols (e.g., NIS, LDAP, and NDS) and for CORBA
object registries. Of particular interest to users of J2EE, JNDI is used to locate Enterprise JavaBean (EJB)
components on the network.

Again, the thrust of J2EE technology is to provide enterprise application developers with much-needed services in the
distributed realm. It's hard to think of a more valuable service than a naming service. JNDI provides the Java
application developer with this much-needed service.

Java Database Connectivity

Java Database Connectivity (JDBC) provides the J2EE application a standard interface to databases (usually
relational databases). In principle, JDBC serves the same purpose as Open Database Connectivity (ODBC). JDBC
provides a database-independent protocol for accessing relational databases from Java. JDBC supports Data
Manipulation Language (DML) statements such as i nsert, updat e, del et e, and sel ect . It also includes Data

Definition Language (DDL) statements such as Cr eat e Tabl e, Al ter Tabl e, and so on.

Database vendors usually provide a JDBC driver that enables a Java program to access the vendor's RDBMS
product. As of this writing, Sun has 154 JDBC drivers listed in its driver database

Note Seehttp://industry.java.sun. conm products/jdbc/drivers for a listing of available drivers for
use with JDBC.

JDBC was included in core Java starting with version 1.1. With JDBC, the SQL is always dynamically generated at
runtime and sent to the database. Many have griped about the inefficiencies of applying dynamically created SQL
against databases. In response, another standard for Java database access has emerged and is called SQLJ. SQLJ
enables static SQL to be used and it requires less cumbersome syntax than JDBC. One SQLJ advantage over JDBC
is better code quality because SQL is checked at compile-time. Also, SQLJ usually shows better performance than
JDBC because access paths to the database are generated once and reused for subsequent executions of the static
SQL.

We speak of levels for JDBC drivers; the slowest are level 1 drivers and the quickest are level 4 drivers. In addition,
some drivers serve as a bridge between JDBC and ODBC, mostly as an easy way to access ODBC databases (MS-
something or other databases, usually).

A type 1 driver provides JDBC access using a JDBC-ODBC bridge. This bridge provides JDBC access to most ODBC
drivers. Disadvantages of this type of JDBC driver include additional performance overhead of the ODBC layer, and
the requirement to load client code on each client machine.

A type 2 driver is a partial Java driver that converts JDBC calls into the native client database API. As with the type 1
driver, this driver requires some client code to be loaded on each client machine.

A type 3 driver is a pure Java driver that translates JDBC calls into a database-independent network protocol. The
database-independent protocol is implemented using a middleware server. The middleware server translates the
database-independent protocol into the native database server protocol. Middleware vendors typically offer a type 3

http://industry.java.sun.com/products/jdbc/drivers

driver. Because the driver is written purely in Java, it requires no configuration on the client machine other than telling
the application the location of the driver.

A type 4 driver is a pure Java driver that uses a native protocol to convert JDBC calls into the database server network
protocol. Using this type of driver, the application can make direct calls from a Java client to the database. A type 4
driver, such as Informix JDBC Driver, is typically offered by the database vendor. Because the driver is written purely
in Java, it requires no configuration on the client machine other than telling the application where to find the driver.

As you might imagine, JDBC relies on a host of other J2EE API sets, such as JTA and JTS, to get the job done.

Remote Method Invocation and IIOP

Remote Method Invocation (RMI) enables a Java application to invoke methods on different Java Virtual Machines.
RMI is an important API used for supporting distributed computing and has been supported in core Java since version
1.1. RMI enables a Java client application to communicate with a Java server application by invoking methods on that
remote object. With RMI, the client gets a reference to a server object, and then it can invoke methods on that object
as if it were a local object within the same virtual machine.

For server objects developed in other languages, you must employ other technigues such as using Java IDL with
CORBA or RMI/IIOP (the Internet Inter-ORB Protocol) to access the server object.

Java Interface Definition Language

By using the Java Interface Definition Language (IDL), the Java programmer has access to CORBA objects. As
previously mentioned, the Java programmer uses the “IDL to Java” compiler, called idlj, to generate Java code to
interact with CORBA objects.

Listing 2-3 is an example of CORBA IDL taken from the CORBA Document Object Model specification.

Note The Document Object Model (DOM) is the recommendation of the Worldwide Web Consortium (W3C) for
expressing a document as a set of related nodes. A common use of DOM is to model XML documents. See
Appendix D for an overview on XML. Refer to ht t p: / / ww. w3c. or g/ DOMfor the definitive specification of

the Document Object Model.

Listing 2-3: Example IDL code from the W3C DOM

interface El ement : Node {

readonly attribute DOVString t agNane;
DOVBt ri ng getAttribute(in DOVString nane);
voi d setAttribute(in DOVString nane,

in DOVBtring val ue)
rai ses(DOVExcepti on);

voi d renoveAttribute(in DOVString nane)
rai ses(DOVExcepti on);

Attr get Attri but eNode(in DOVString nane);
Attr set AttributeNode(in Attr newAttr)

rai ses(DOVExcepti on);
Attr renoveAttri but eNode(in Attr ol dAttr)

rai ses(DOVExcepti on);
NodelLi st get El enent sByTagNane(in DOVt ri ng nane);
voi d normal i ze();

1

The idlj compiler produces Listing 2-4, the Java language binding for the IDL shown above.

http://www.w3c.org/DOM

Listing 2-4: Java code from the W3C DOM

public interface El enent extends Node {

public String get TagNane() ;
public String getAttribute(String nane);
public void setAttribute(String nane,

String val ue)
t hrows DOVExcepti on;

public void renoveAttribute(String nane)
t hrows DOVExcepti on;
public Attr get Attri but eNode(String nane);
public Attr set Attri buteNode(Attr newAttr)
t hrows DOVExcepti on;
public Attr renoveAttri but eNode(Attr ol dAttr)
t hrows DOVExcepti on;
publ i ¢ Nodeli st get El enent sByTagNane(String nane);
public void normal i ze();
}

J2EE Connector

The J2EE Connector provides a Java solution to the problem of connectivity among the many application servers and
Enterprise Information Systems (EIS) already in existence. By using the J2EE Connector architecture, EIS vendors no
longer need to customize their product for each application server. Application server vendors who conform to the
J2EE Connector architecture do not need to add custom code whenever they want to add connectivity to a new EIS.

Before the J2EE Connector architecture was defined, no specification for the Java platform addressed the problem of
providing a standard architecture for integrating heterogeneous EISs. Most EIS vendors and application server
vendors use nonstandard vendor-specific architectures to provide connectivity between application servers and
enterprise information systems.

Top <

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 3: A First Look at JavaServer Pages

This chapter provides you with a bird's eye view of JavaServer Pages (JSP). You can read how to execute JSP and
how JSP is intimately related to Java servlets. You can also see a couple of simple JSPs and read about what
happens during the execution of these JSPs. This chapter continues with a brief discussion on the advantages and
disadvantages of using JSP over several competing technologies and is followed by a recap of the material presented.

JavaServer Pages

JavaServer Pages (JSP) is one solution to providing dynamic Web content. The days of displaying the same old
HTML page to all customers, or to the same customer, who has visited the site several times, is rapidly becoming a
thing of the past. Today, Web pages need to display different content customized according to user input or relevant
events.

Customers want and expect some sort of personalization from sites. A return customer does not want to be forced to
reenter the same information when revisiting the site. Also, a Web page displaying data relevant to your inputs may
need to differ from pages displayed for other users. Imagine an online banking site where you enter your password
and see not only information on your accounts, but information for other bank customers as well!

Sites that change based on relevant events also provide a good example of dynamic content. Sites with stock market
quotes or weather information need to be refreshed at regular intervals to be useful. News sites must also refresh
content to stay on top of what's happening in the world. Stores that have online catalogs that often change inventory
and prices should not contain static content. Today’s Internet-related technologies, such as JavaServer Pages, give
the Web application developer the means to create pages with dynamic content.

JSP combines static text with special JSP tags. The static text represents invariant parts of the Web page, typically
but not necessarily HTML.

Note JSP pages mostly use HTML and XML for the static, template portion. Rather than constantly writing “HTML
or XML,” I've taken the liberty of writing “HTML” in this chapter and trusting you to know if “HTML or XML” or
“HTML” applies.

The JSP tags represent parts of the page that can change depending on the factors the page designer deems
appropriate. The basic mechanics are that the static text and the JSP tags are eventually sent to a Java-enabled
server that generates HTML from both the static part and the JSP tag. Once done, the server sends the generated
HTML back to the browser for display and continued user interaction.

This approach of mixing static text with tags is not unique to JSP. Indeed, several competing technologies employ this
approach. However, JSP enables you to leverage the full power of the Java programming language to make your
pages very flexible. The pros and cons of JSP are discussed later in this chapter, in the section “JSP Versus the

Competition.”

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=867331246

Creating and Using JSP Pages

A special IDE is not required to create JSP pages. You don't develop JSP pages as you would a Java application or
servlet. You don't have to wrap JSP pages in packages or deal with system settings (such as CLASSPATH). You don't
even have to (but you could) compile JSP pages! All you need is a good Web page editor that enables you to easily
enter the various JSP tags.

A site development team using JSP pages can have part of the team develop the static HTML portion, while others
develop the dynamic portion. The HTML developers need not know how to code JSP pages, or know anything about
programming in Java. But, as you might imagine, the JSP developer needs to be adept in coding HTML. When you
recall that the end result of a JSP is a Web page containing generated HTML, how could any self-respecting JSP
developer not be HTML-fluent?

It's simple to use a JSP page. The JSP page user must have access to a server that understands JSP tags, or a JSP-
enabled server. To use a JSP page with such a server, you enter the name of the page as you would any Web page
in the location area of your browser. A file representing a JSP page has a . j sp extension, which a JSP-enabled

server recognizes as a JSP page and, in turn, processes the special tags as JSP tags.

Note The term “JSP page,” although redundant, enjoys widespread use among the JSP development community.
Hence, the term is used throughout this book.

For Web pages that submit a JSP page to the server with a GET or POST service, the customer may never realize that
JSP pages are in play on the site. The ACTI ON attribute of an HTML form may specify that the action upon submitting

the form is to send the name of a JSP page with one or more parameters to the server. Again, the JSP-enabled server
recognizes the . j sp extension and takes appropriate action.

The Relationship Between JSP Pages and Java Servlets

The simple mechanics of creating and using JSP pages masks the complexity of the under-the-covers activity. JSP
pages actually are compiled into Java servlets. All those environment issues dealing with compiling and executing
servlets come into play. Whereas you don't compile JSPs, your Java-enabled server performs the compilation from
JSP page into a Java servlet for you. Although you, the JSP developer, need not care about CLASSPATH and other
settings, your server needs to know these settings. Your server needs access to the Java compiler and various
classes required for servlet and JSP compilation.

The first time you request a JSP page, the server translates the page into a Java class. Recall from Chapter 1 the

concept of J2EE containers. The JSP-enabled server has a JSP container that provides the environment necessary
for this translation. Sometimes, the JSP container is called the JSP engine; both terms are used interchangeably in
this book.

The server compiles the class generated by the JSP engine into a servlet. This servlet contains Java pri ntl n
statements that write the static text to the output stream, and Java code that implements the functionality of your JSP
tags. Depending on the amount of Java code generated by the JSP and the speed of the server, you may notice a
slight delay during the JSP-to-servlet compilation. However, subsequent requests of the JSP page do not cause a
page retranslation and recompilation. The JSP request accesses the already compiled servlet in memory.

As an aside, some servers enable you to establish file aliases. You can avoid the delay caused by the first-time JSP
translation and compilation by requesting your JSP page (causing translation and servlet generation), followed by
creating an alias of your JSP page to the generated servlet. Now, when your customer requests your JSP page, the
server references the previously generated servlet, which is already compiled and in memory.

Top

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

JSP Versus the Competition

As previously mentioned, JSP is not the only technology available to the Web application developer that generates
dynamic Web output. As with any technology, JSP has its advantages and disadvantages. This section describes
what JSPs can offer that competing technologies cannot.

Separating Logic from Presentation

As you read previously, coding business logic apart from presentation is a good design feature. Do you recall reading
about multitier architectures from Chapter 1? When properly separated, the code that implements the business logic

can be changed without affecting the code that implements the presentation, and vice-versa. JavaServer Pages give
the Web developer the ability to cleanly separate the logic from look-and-feel.

JSP enables Web developers to encapsulate the business logic in custom JSP tags (discussed in Chapter 7, “JSP

Tag Extensions”) and Java software components, such as JavaBeans and Enterprise JavaBeans. The code,
implementing the logic, is tied together with JSP scriptlets, expressions, and other JSP tags, which haven’'t been
discussed yet, and is sent to the Web server for execution.

This separation enables developers to practice their particular specialty; the skilled HTML author has no need to learn
JSP and the JSP author doesn’t need to be an HTML maven. The HTML author can concentrate on coding HTML
(presentation) tags and the JSP developer can concentrate on coding JSP (logic) tags.

The Strength of Java

Because JSP pages eventually are translated and compiled into Java servlets, you can use JSP pages on any server
that supports Java. You are not tied to any particular vendor or platform when you go the JSP route.

Of course, you have full command and control of the Java programming language when you use JSP. JSP make
extensive use of Java Beans and can communicate with other J2EE technologies, such as JDBC and, of course,
Enterprise JavaBeans.

JSP Versus Java Servlets

Before the advent of JSP, the most-used Java technology that could generate dynamic Web page content was Java
servlets. Because JSPs eventually are compiled into Java servlets, you can do as much with JSPs as you can do with
Java servlets. However, coding JSPs is easier than coding Java servlets. With JSPs, you place static text by coding
HTML tags as opposed to Java servlets, in which you place static text by coding a plentitude of pri nt | n statements.
With JSPs, you change static text by changing HTML; and with Java servlets, you change static text by modifying a
Java servlet (don't forget the compile/debug cycle!).

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=776999381

JSP Versus Active Server Pages

Active Server Pages (ASP) is the Microsoft solution for providing dynamic Web content. Actually, ASP looks very
similar to JSP; both use custom tags to implement business logic and text (HTML) for invariant Web page parts.
However, the devil is in the details, as described in the following:

. ASP uses VBScript or JScript, a Microsoft flavor of JavaScript, as its scripting language, whereas JSP uses Java,
a more powerful language than VBScript or JScript.

. The ASP developer typically uses a Microsoft Web server platform or requires a third-party product that permits
ASP execution on non-Microsoft platforms. The JSP developer has a wide variety of Web server platforms
available for use.

Note These third parties must port Microsoft software components, such as ActiveX, to different platforms in order
for ASP to be used on these platforms.

. An ASP is interpreted every time the page is invoked, whereas a JSP is interpreted only the first time the page is
invoked (or when the page is changed).

However, Microsoft has overcome the previously mentioned limitations of ASP with its release of ASP.NET. ASP.NET,
formerly ASP+, promises to be a serious contender against JSP. As of this writing, you may download the ASP.NET
Beta-2 release from htt p: / / wwv. asp. net /.

JSPs Versus Client-Side Scripting

Client-side scripting with JavaScript or VBScript is certainly handy and useful, but it does present several problems,
including the following:

. You must count on the customer’s browser to have scripting enabled, which, of course, you can't.

. Different customers may use different browsers. And coding client-side scripts that work on different browsers can
be a headache.

. Scripting languages used on the client side cannot match the strength and versatility of Java.

. Client-side scripting languages have very limited access to server-side resources, such as databases. JavaServer
pages have access to all server-side resources within the well-defined architecture of J2EE.

. You have the usual problems of maintaining software on the client that caused your organization to thin the client
in the first place.

In short, the advantages of using JSP over competing technologies are as follows:

. JSP enables a clean separation of business logic from presentation.
. JSP, by using Java as the scripting language, is not limited to a specific vendor’s platform.

. JSP, as an integral part of the J2EE architecture, has full access to server-side resources. Because JSP pages
execute on the server, you need not require the client to use a particular browser or have a fixed configuration

Disadvantages of Using JSP

What technology doesn’t have problems? Certainly, JSP technology has room for improvement. That said, what one
Web application developer views as a weakness, another may view as a strength (remember “bug” versus
“features”?). Here is a (short) list of real or perceived shortcomings of JavaServer Pages:

http://www.asp.net/

. JSP implementations typically issue poor diagnostics. Because JSP pages are translated, and then compiled into
Java servlets, errors that creep in your pages are rarely seen as errors arising from the coding of JSP pages.
Instead, such errors are seen as either Java servlet errors or HTML errors. You could look at this as an example of
a perceived strength of JSP — that of not needing to compile them — as opposed to a weakness. For example, a
JSP developer coding a scriptlet where a JSP declaration is called for would have to interpret a Java compile error.
The JSP developer would need access to the generated source to properly diagnose the error. Of course,
generated code is rarely a thing of beauty, and often, not easily understood.

. The JSP developer needs to know Java. Again, one